'Weak Dependency Graph [60.0]' ------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> zeros() , a__tail(X) -> tail(X)} Details: We have computed the following set of weak (innermost) dependency pairs: { a__zeros^#() -> c_0() , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(zeros()) -> c_2(a__zeros^#()) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(0()) -> c_5() , a__zeros^#() -> c_6() , a__tail^#(X) -> c_7()} The usable rules are: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X)} The estimated dependency graph contains the following edges: {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))} ==> {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))} ==> {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))} ==> {mark^#(zeros()) -> c_2(a__zeros^#())} {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))} ==> {mark^#(0()) -> c_5()} {mark^#(zeros()) -> c_2(a__zeros^#())} ==> {a__zeros^#() -> c_6()} {mark^#(zeros()) -> c_2(a__zeros^#())} ==> {a__zeros^#() -> c_0()} {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} ==> {a__tail^#(X) -> c_7()} {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} ==> {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))} {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} ==> {mark^#(0()) -> c_5()} {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} ==> {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} ==> {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} ==> {mark^#(zeros()) -> c_2(a__zeros^#())} We consider the following path(s): 1) { a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros^#() -> c_6()} The usable rules for this path are the following: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X) , mark^#(zeros()) -> c_2(a__zeros^#()) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , a__zeros^#() -> c_6()} Details: We apply the weight gap principle, strictly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: Interpretation Functions: a__zeros() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__zeros() -> zeros()} and weakly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__zeros() -> zeros()} Details: Interpretation Functions: a__zeros() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(zeros()) -> c_2(a__zeros^#())} and weakly orienting the rules { a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(zeros()) -> c_2(a__zeros^#())} Details: Interpretation Functions: a__zeros() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [0] zeros() = [8] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [3] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__zeros^#() -> c_6()} and weakly orienting the rules { mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__zeros^#() -> c_6()} Details: Interpretation Functions: a__zeros() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [0] zeros() = [8] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [8] c_0() = [0] a__tail^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [3] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [7] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} and weakly orienting the rules { a__zeros^#() -> c_6() , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} Details: Interpretation Functions: a__zeros() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [0] zeros() = [8] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [7] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [8] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__tail(X) -> tail(X)} and weakly orienting the rules { mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros^#() -> c_6() , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__tail(X) -> tail(X)} Details: Interpretation Functions: a__zeros() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [2] 0() = [0] zeros() = [1] a__tail(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [12] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [13] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__zeros() -> cons(0(), zeros())} and weakly orienting the rules { a__tail(X) -> tail(X) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros^#() -> c_6() , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__zeros() -> cons(0(), zeros())} Details: Interpretation Functions: a__zeros() = [4] cons(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] zeros() = [2] a__tail(x1) = [1] x1 + [7] mark(x1) = [1] x1 + [2] tail(x1) = [1] x1 + [5] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [5] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [5] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2)} Weak Rules: { a__zeros() -> cons(0(), zeros()) , a__tail(X) -> tail(X) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros^#() -> c_6() , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2)} Weak Rules: { a__zeros() -> cons(0(), zeros()) , a__tail(X) -> tail(X) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros^#() -> c_6() , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__zeros_0() -> 4 , a__zeros_1() -> 4 , a__zeros_1() -> 5 , cons_0(2, 2) -> 2 , cons_1(5, 2) -> 4 , cons_1(5, 2) -> 5 , 0_0() -> 2 , 0_0() -> 4 , 0_1() -> 4 , 0_1() -> 5 , zeros_0() -> 2 , zeros_0() -> 4 , zeros_1() -> 2 , zeros_1() -> 4 , zeros_1() -> 5 , a__tail_1(5) -> 4 , a__tail_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 4 , mark_1(2) -> 5 , tail_0(2) -> 2 , tail_1(5) -> 4 , tail_1(5) -> 5 , a__zeros^#_0() -> 1 , a__zeros^#_1() -> 7 , a__tail^#_0(2) -> 1 , a__tail^#_0(4) -> 3 , a__tail^#_1(5) -> 6 , c_1_0(1) -> 1 , c_1_1(8) -> 3 , c_1_1(8) -> 6 , mark^#_0(2) -> 1 , mark^#_1(2) -> 8 , c_2_0(1) -> 1 , c_2_1(7) -> 1 , c_2_1(7) -> 8 , c_3_0(3) -> 1 , c_3_1(6) -> 1 , c_3_1(6) -> 8 , c_4_0(1) -> 1 , c_4_1(8) -> 8 , c_6_0() -> 1 , c_6_1() -> 7} 2) { a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros^#() -> c_0()} The usable rules for this path are the following: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X) , mark^#(zeros()) -> c_2(a__zeros^#()) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , a__zeros^#() -> c_0()} Details: We apply the weight gap principle, strictly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: Interpretation Functions: a__zeros() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__zeros() -> zeros()} and weakly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__zeros() -> zeros()} Details: Interpretation Functions: a__zeros() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(zeros()) -> c_2(a__zeros^#())} and weakly orienting the rules { a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(zeros()) -> c_2(a__zeros^#())} Details: Interpretation Functions: a__zeros() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [0] zeros() = [8] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [3] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__zeros^#() -> c_0()} and weakly orienting the rules { mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__zeros^#() -> c_0()} Details: Interpretation Functions: a__zeros() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [0] zeros() = [8] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [8] c_0() = [0] a__tail^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [3] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [7] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} and weakly orienting the rules { a__zeros^#() -> c_0() , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} Details: Interpretation Functions: a__zeros() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [8] 0() = [0] zeros() = [8] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [7] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [9] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [8] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__tail(X) -> tail(X)} and weakly orienting the rules { mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros^#() -> c_0() , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__tail(X) -> tail(X)} Details: Interpretation Functions: a__zeros() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [2] 0() = [0] zeros() = [1] a__tail(x1) = [1] x1 + [8] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [12] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [13] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__zeros() -> cons(0(), zeros())} and weakly orienting the rules { a__tail(X) -> tail(X) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros^#() -> c_0() , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__zeros() -> cons(0(), zeros())} Details: Interpretation Functions: a__zeros() = [4] cons(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] zeros() = [2] a__tail(x1) = [1] x1 + [7] mark(x1) = [1] x1 + [2] tail(x1) = [1] x1 + [5] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [5] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [5] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2)} Weak Rules: { a__zeros() -> cons(0(), zeros()) , a__tail(X) -> tail(X) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros^#() -> c_0() , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2)} Weak Rules: { a__zeros() -> cons(0(), zeros()) , a__tail(X) -> tail(X) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros^#() -> c_0() , mark^#(zeros()) -> c_2(a__zeros^#()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail(cons(X, XS)) -> mark(XS) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__zeros_0() -> 4 , a__zeros_1() -> 4 , a__zeros_1() -> 5 , cons_0(2, 2) -> 2 , cons_1(5, 2) -> 4 , cons_1(5, 2) -> 5 , 0_0() -> 2 , 0_0() -> 4 , 0_1() -> 4 , 0_1() -> 5 , zeros_0() -> 2 , zeros_0() -> 4 , zeros_1() -> 2 , zeros_1() -> 4 , zeros_1() -> 5 , a__tail_1(5) -> 4 , a__tail_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 4 , mark_1(2) -> 5 , tail_0(2) -> 2 , tail_1(5) -> 4 , tail_1(5) -> 5 , a__zeros^#_0() -> 1 , a__zeros^#_1() -> 7 , c_0_0() -> 1 , c_0_1() -> 7 , a__tail^#_0(2) -> 1 , a__tail^#_0(4) -> 3 , a__tail^#_1(5) -> 6 , c_1_0(1) -> 1 , c_1_1(8) -> 3 , c_1_1(8) -> 6 , mark^#_0(2) -> 1 , mark^#_1(2) -> 8 , c_2_0(1) -> 1 , c_2_1(7) -> 1 , c_2_1(7) -> 8 , c_3_0(3) -> 1 , c_3_1(6) -> 1 , c_3_1(6) -> 8 , c_4_0(1) -> 1 , c_4_1(8) -> 8} 3) { a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} The usable rules for this path are the following: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: We apply the weight gap principle, strictly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(zeros()) -> a__zeros() , mark(0()) -> 0()} Details: Interpretation Functions: a__zeros() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros()} and weakly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros()} Details: Interpretation Functions: a__zeros() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} and weakly orienting the rules { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} Details: Interpretation Functions: a__zeros() = [8] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [1] zeros() = [7] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [9] mark^#(x1) = [1] x1 + [4] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} and weakly orienting the rules { mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: Interpretation Functions: a__zeros() = [7] cons(x1, x2) = [1] x1 + [1] x2 + [6] 0() = [0] zeros() = [1] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [6] tail(x1) = [1] x1 + [13] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__tail(cons(X, XS)) -> mark(XS)} and weakly orienting the rules { mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__tail(cons(X, XS)) -> mark(XS)} Details: Interpretation Functions: a__zeros() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [1] a__tail(x1) = [1] x1 + [9] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [15] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [5] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__tail(X) -> tail(X)} Weak Rules: { a__tail(cons(X, XS)) -> mark(XS) , mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__tail(X) -> tail(X)} Weak Rules: { a__tail(cons(X, XS)) -> mark(XS) , mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0()} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a__zeros_0() -> 4 , a__zeros_1() -> 4 , a__zeros_1() -> 5 , a__zeros_2() -> 4 , a__zeros_2() -> 5 , cons_0(2, 2) -> 2 , cons_1(5, 2) -> 4 , cons_1(5, 2) -> 5 , cons_2(8, 9) -> 4 , cons_2(8, 9) -> 5 , 0_0() -> 2 , 0_0() -> 4 , 0_1() -> 4 , 0_1() -> 5 , 0_2() -> 8 , zeros_0() -> 2 , zeros_0() -> 4 , zeros_1() -> 2 , zeros_1() -> 4 , zeros_1() -> 5 , zeros_2() -> 4 , zeros_2() -> 5 , zeros_2() -> 9 , a__tail_0(4) -> 4 , a__tail_1(5) -> 4 , a__tail_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 4 , mark_1(2) -> 5 , mark_1(9) -> 4 , mark_2(9) -> 4 , mark_2(9) -> 5 , tail_0(2) -> 2 , tail_1(4) -> 4 , tail_2(5) -> 4 , tail_2(5) -> 5 , a__tail^#_0(2) -> 1 , a__tail^#_0(4) -> 3 , a__tail^#_1(5) -> 7 , c_1_0(1) -> 1 , c_1_1(6) -> 3 , c_1_1(6) -> 7 , c_1_2(10) -> 7 , mark^#_0(2) -> 1 , mark^#_1(2) -> 6 , mark^#_1(9) -> 6 , mark^#_2(9) -> 10 , c_3_0(3) -> 1 , c_3_1(7) -> 1 , c_3_1(7) -> 6 , c_4_0(1) -> 1 , c_4_1(6) -> 6} 4) { a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , a__tail^#(X) -> c_7()} The usable rules for this path are the following: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , a__tail^#(X) -> c_7()} Details: We apply the weight gap principle, strictly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail^#(X) -> c_7()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail^#(X) -> c_7()} Details: Interpretation Functions: a__zeros() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros()} and weakly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros()} Details: Interpretation Functions: a__zeros() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [7] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} and weakly orienting the rules { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} Details: Interpretation Functions: a__zeros() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [8] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__tail(cons(X, XS)) -> mark(XS) , a__tail(X) -> tail(X)} and weakly orienting the rules { mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__tail(cons(X, XS)) -> mark(XS) , a__tail(X) -> tail(X)} Details: Interpretation Functions: a__zeros() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [3] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [0] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} and weakly orienting the rules { a__tail(cons(X, XS)) -> mark(XS) , a__tail(X) -> tail(X) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: Interpretation Functions: a__zeros() = [7] cons(x1, x2) = [1] x1 + [1] x2 + [1] 0() = [0] zeros() = [6] a__tail(x1) = [1] x1 + [9] mark(x1) = [1] x1 + [10] tail(x1) = [1] x1 + [9] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [6] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [15] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))} and weakly orienting the rules { mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , a__tail(cons(X, XS)) -> mark(XS) , a__tail(X) -> tail(X) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail^#(X) -> c_7()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))} Details: Interpretation Functions: a__zeros() = [10] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [6] zeros() = [2] a__tail(x1) = [1] x1 + [13] mark(x1) = [1] x1 + [10] tail(x1) = [1] x1 + [13] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [6] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [3] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2)} Weak Rules: { a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , a__tail(cons(X, XS)) -> mark(XS) , a__tail(X) -> tail(X) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail^#(X) -> c_7()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2)} Weak Rules: { a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , a__tail(cons(X, XS)) -> mark(XS) , a__tail(X) -> tail(X) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , a__tail^#(X) -> c_7()} Details: The problem is Match-bounded by 1. The enriched problem is compatible with the following automaton: { a__zeros_0() -> 4 , a__zeros_1() -> 4 , a__zeros_1() -> 5 , cons_0(2, 2) -> 2 , cons_1(5, 2) -> 4 , cons_1(5, 2) -> 5 , 0_0() -> 2 , 0_0() -> 4 , 0_1() -> 4 , 0_1() -> 5 , zeros_0() -> 2 , zeros_0() -> 4 , zeros_1() -> 2 , zeros_1() -> 4 , zeros_1() -> 5 , a__tail_1(5) -> 4 , a__tail_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 4 , mark_1(2) -> 5 , tail_0(2) -> 2 , tail_1(5) -> 4 , tail_1(5) -> 5 , a__tail^#_0(2) -> 1 , a__tail^#_0(4) -> 3 , a__tail^#_1(5) -> 7 , c_1_0(1) -> 1 , c_1_1(6) -> 3 , c_1_1(6) -> 7 , mark^#_0(2) -> 1 , mark^#_1(2) -> 6 , c_3_0(3) -> 1 , c_3_1(7) -> 1 , c_3_1(7) -> 6 , c_4_0(1) -> 1 , c_4_1(6) -> 6 , c_7_0() -> 1 , c_7_0() -> 3 , c_7_1() -> 7} 5) { a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(zeros()) -> c_2(a__zeros^#())} The usable rules for this path are the following: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(zeros()) -> c_2(a__zeros^#())} Details: We apply the weight gap principle, strictly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , mark^#(zeros()) -> c_2(a__zeros^#())} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , mark^#(zeros()) -> c_2(a__zeros^#())} Details: Interpretation Functions: a__zeros() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [2] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros()} and weakly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0() , mark^#(zeros()) -> c_2(a__zeros^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros()} Details: Interpretation Functions: a__zeros() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [0] c_2(x1) = [1] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} and weakly orienting the rules { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , mark^#(zeros()) -> c_2(a__zeros^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))} Details: Interpretation Functions: a__zeros() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [8] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} and weakly orienting the rules { mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , mark^#(zeros()) -> c_2(a__zeros^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: Interpretation Functions: a__zeros() = [3] cons(x1, x2) = [1] x1 + [1] x2 + [2] 0() = [1] zeros() = [0] a__tail(x1) = [1] x1 + [2] mark(x1) = [1] x1 + [4] tail(x1) = [1] x1 + [13] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [2] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__tail(cons(X, XS)) -> mark(XS)} and weakly orienting the rules { mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , mark^#(zeros()) -> c_2(a__zeros^#())} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__tail(cons(X, XS)) -> mark(XS)} Details: Interpretation Functions: a__zeros() = [4] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [1] zeros() = [3] a__tail(x1) = [1] x1 + [9] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [15] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [1] x1 + [1] c_3(x1) = [1] x1 + [14] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__tail(X) -> tail(X)} Weak Rules: { a__tail(cons(X, XS)) -> mark(XS) , mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , mark^#(zeros()) -> c_2(a__zeros^#())} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__tail(X) -> tail(X)} Weak Rules: { a__tail(cons(X, XS)) -> mark(XS) , mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark(zeros()) -> a__zeros() , mark(0()) -> 0() , mark^#(zeros()) -> c_2(a__zeros^#())} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a__zeros_0() -> 4 , a__zeros_1() -> 4 , a__zeros_1() -> 5 , a__zeros_2() -> 4 , a__zeros_2() -> 5 , cons_0(2, 2) -> 2 , cons_1(5, 2) -> 4 , cons_1(5, 2) -> 5 , cons_2(9, 10) -> 4 , cons_2(9, 10) -> 5 , 0_0() -> 2 , 0_0() -> 4 , 0_1() -> 4 , 0_1() -> 5 , 0_2() -> 9 , zeros_0() -> 2 , zeros_0() -> 4 , zeros_1() -> 2 , zeros_1() -> 4 , zeros_1() -> 5 , zeros_2() -> 4 , zeros_2() -> 5 , zeros_2() -> 10 , a__tail_0(4) -> 4 , a__tail_1(5) -> 4 , a__tail_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 4 , mark_1(2) -> 5 , mark_1(10) -> 4 , mark_2(10) -> 4 , mark_2(10) -> 5 , tail_0(2) -> 2 , tail_1(4) -> 4 , tail_2(5) -> 4 , tail_2(5) -> 5 , a__zeros^#_0() -> 1 , a__zeros^#_1() -> 8 , a__zeros^#_2() -> 12 , a__tail^#_0(2) -> 1 , a__tail^#_0(4) -> 3 , a__tail^#_1(5) -> 7 , c_1_0(1) -> 1 , c_1_1(6) -> 3 , c_1_1(6) -> 7 , c_1_2(11) -> 7 , mark^#_0(2) -> 1 , mark^#_1(2) -> 6 , mark^#_1(10) -> 6 , mark^#_2(10) -> 11 , c_2_0(1) -> 1 , c_2_1(8) -> 1 , c_2_1(8) -> 6 , c_2_2(12) -> 6 , c_2_2(12) -> 11 , c_3_0(3) -> 1 , c_3_1(7) -> 1 , c_3_1(7) -> 6 , c_4_0(1) -> 1 , c_4_1(6) -> 6} 6) { a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(0()) -> c_5()} The usable rules for this path are the following: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X)} We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs. 'Weight Gap Principle' ---------------------- Answer: YES(?,O(n^1)) Input Problem: innermost runtime-complexity with respect to Rules: { mark(zeros()) -> a__zeros() , mark(tail(X)) -> a__tail(mark(X)) , mark(cons(X1, X2)) -> cons(mark(X1), X2) , mark(0()) -> 0() , a__zeros() -> cons(0(), zeros()) , a__tail(cons(X, XS)) -> mark(XS) , a__zeros() -> zeros() , a__tail(X) -> tail(X) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , mark^#(0()) -> c_5()} Details: We apply the weight gap principle, strictly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0()} and weakly orienting the rules {} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(zeros()) -> a__zeros() , mark(0()) -> 0()} Details: Interpretation Functions: a__zeros() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [0] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [1] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(0()) -> c_5()} and weakly orienting the rules { mark(zeros()) -> a__zeros() , mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(0()) -> c_5()} Details: Interpretation Functions: a__zeros() = [1] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [0] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [0] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [1] mark^#(x1) = [1] x1 + [5] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [1] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules { mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} and weakly orienting the rules { a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(0()) -> c_5() , mark(zeros()) -> a__zeros() , mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: { mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))} Details: Interpretation Functions: a__zeros() = [14] cons(x1, x2) = [1] x1 + [1] x2 + [13] 0() = [0] zeros() = [1] a__tail(x1) = [1] x1 + [2] mark(x1) = [1] x1 + [15] tail(x1) = [1] x1 + [15] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [0] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor We apply the weight gap principle, strictly orienting the rules {a__tail(cons(X, XS)) -> mark(XS)} and weakly orienting the rules { mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(0()) -> c_5() , mark(zeros()) -> a__zeros() , mark(0()) -> 0()} using the following strongly linear interpretation: Processor 'Matrix Interpretation' oriented the following rules strictly: {a__tail(cons(X, XS)) -> mark(XS)} Details: Interpretation Functions: a__zeros() = [0] cons(x1, x2) = [1] x1 + [1] x2 + [0] 0() = [0] zeros() = [0] a__tail(x1) = [1] x1 + [9] mark(x1) = [1] x1 + [1] tail(x1) = [1] x1 + [15] a__zeros^#() = [0] c_0() = [0] a__tail^#(x1) = [1] x1 + [1] c_1(x1) = [1] x1 + [0] mark^#(x1) = [1] x1 + [1] c_2(x1) = [0] x1 + [0] c_3(x1) = [1] x1 + [9] c_4(x1) = [1] x1 + [0] c_5() = [0] c_6() = [0] c_7() = [0] Finally we apply the subprocessor 'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment'' ------------------------------------------------------------------------------------------ Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__tail(X) -> tail(X)} Weak Rules: { a__tail(cons(X, XS)) -> mark(XS) , mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(0()) -> c_5() , mark(zeros()) -> a__zeros() , mark(0()) -> 0()} Details: The problem was solved by processor 'Bounds with default enrichment': 'Bounds with default enrichment' -------------------------------- Answer: YES(?,O(n^1)) Input Problem: innermost relative runtime-complexity with respect to Strict Rules: { mark(cons(X1, X2)) -> cons(mark(X1), X2) , a__tail(X) -> tail(X)} Weak Rules: { a__tail(cons(X, XS)) -> mark(XS) , mark(tail(X)) -> a__tail(mark(X)) , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS)) , mark^#(cons(X1, X2)) -> c_4(mark^#(X1)) , a__zeros() -> cons(0(), zeros()) , a__zeros() -> zeros() , mark^#(tail(X)) -> c_3(a__tail^#(mark(X))) , mark^#(0()) -> c_5() , mark(zeros()) -> a__zeros() , mark(0()) -> 0()} Details: The problem is Match-bounded by 2. The enriched problem is compatible with the following automaton: { a__zeros_0() -> 4 , a__zeros_1() -> 4 , a__zeros_1() -> 5 , a__zeros_2() -> 4 , a__zeros_2() -> 5 , cons_0(2, 2) -> 2 , cons_1(5, 2) -> 4 , cons_1(5, 2) -> 5 , cons_2(8, 9) -> 4 , cons_2(8, 9) -> 5 , 0_0() -> 2 , 0_0() -> 4 , 0_1() -> 4 , 0_1() -> 5 , 0_2() -> 8 , zeros_0() -> 2 , zeros_0() -> 4 , zeros_1() -> 2 , zeros_1() -> 4 , zeros_1() -> 5 , zeros_2() -> 4 , zeros_2() -> 5 , zeros_2() -> 9 , a__tail_0(4) -> 4 , a__tail_1(5) -> 4 , a__tail_1(5) -> 5 , mark_0(2) -> 4 , mark_1(2) -> 4 , mark_1(2) -> 5 , mark_1(9) -> 4 , mark_2(9) -> 4 , mark_2(9) -> 5 , tail_0(2) -> 2 , tail_1(4) -> 4 , tail_2(5) -> 4 , tail_2(5) -> 5 , a__tail^#_0(2) -> 1 , a__tail^#_0(4) -> 3 , a__tail^#_1(5) -> 7 , c_1_0(1) -> 1 , c_1_1(6) -> 3 , c_1_1(6) -> 7 , c_1_2(10) -> 7 , mark^#_0(2) -> 1 , mark^#_1(2) -> 6 , mark^#_1(9) -> 6 , mark^#_2(9) -> 10 , c_3_0(3) -> 1 , c_3_1(7) -> 1 , c_3_1(7) -> 6 , c_4_0(1) -> 1 , c_4_1(6) -> 6 , c_5_0() -> 1 , c_5_1() -> 6}