'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  a__zeros() -> cons(0(), zeros())
     , a__tail(cons(X, XS)) -> mark(XS)
     , mark(zeros()) -> a__zeros()
     , mark(tail(X)) -> a__tail(mark(X))
     , mark(cons(X1, X2)) -> cons(mark(X1), X2)
     , mark(0()) -> 0()
     , a__zeros() -> zeros()
     , a__tail(X) -> tail(X)}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  a__zeros^#() -> c_0()
    , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
    , mark^#(zeros()) -> c_2(a__zeros^#())
    , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
    , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
    , mark^#(0()) -> c_5()
    , a__zeros^#() -> c_6()
    , a__tail^#(X) -> c_7()}
  
  The usable rules are:
   {  mark(zeros()) -> a__zeros()
    , mark(tail(X)) -> a__tail(mark(X))
    , mark(cons(X1, X2)) -> cons(mark(X1), X2)
    , mark(0()) -> 0()
    , a__zeros() -> cons(0(), zeros())
    , a__tail(cons(X, XS)) -> mark(XS)
    , a__zeros() -> zeros()
    , a__tail(X) -> tail(X)}
  
  The estimated dependency graph contains the following edges:
   {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))}
     ==> {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
   {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))}
     ==> {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
   {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))}
     ==> {mark^#(zeros()) -> c_2(a__zeros^#())}
   {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))}
     ==> {mark^#(0()) -> c_5()}
   {mark^#(zeros()) -> c_2(a__zeros^#())}
     ==> {a__zeros^#() -> c_6()}
   {mark^#(zeros()) -> c_2(a__zeros^#())}
     ==> {a__zeros^#() -> c_0()}
   {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
     ==> {a__tail^#(X) -> c_7()}
   {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
     ==> {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))}
   {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
     ==> {mark^#(0()) -> c_5()}
   {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
     ==> {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
   {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
     ==> {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
   {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
     ==> {mark^#(zeros()) -> c_2(a__zeros^#())}
  
  We consider the following path(s):
   1) {  a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
       , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
       , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
       , mark^#(zeros()) -> c_2(a__zeros^#())
       , a__zeros^#() -> c_6()}
      
      The usable rules for this path are the following:
      {  mark(zeros()) -> a__zeros()
       , mark(tail(X)) -> a__tail(mark(X))
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(0()) -> 0()
       , a__zeros() -> cons(0(), zeros())
       , a__tail(cons(X, XS)) -> mark(XS)
       , a__zeros() -> zeros()
       , a__tail(X) -> tail(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(zeros()) -> a__zeros()
               , mark(tail(X)) -> a__tail(mark(X))
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(0()) -> 0()
               , a__zeros() -> cons(0(), zeros())
               , a__tail(cons(X, XS)) -> mark(XS)
               , a__zeros() -> zeros()
               , a__tail(X) -> tail(X)
               , mark^#(zeros()) -> c_2(a__zeros^#())
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
               , a__zeros^#() -> c_6()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(zeros()) -> a__zeros()
               , mark(0()) -> 0()
               , a__tail(cons(X, XS)) -> mark(XS)
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__zeros() -> zeros()}
            and weakly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__zeros() -> zeros()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(zeros()) -> c_2(a__zeros^#())}
            and weakly orienting the rules
            {  a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(zeros()) -> c_2(a__zeros^#())}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [0]
                  zeros() = [8]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [3]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__zeros^#() -> c_6()}
            and weakly orienting the rules
            {  mark^#(zeros()) -> c_2(a__zeros^#())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__zeros^#() -> c_6()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [0]
                  zeros() = [8]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [8]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [3]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [7]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
            and weakly orienting the rules
            {  a__zeros^#() -> c_6()
             , mark^#(zeros()) -> c_2(a__zeros^#())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [0]
                  zeros() = [8]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [7]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [8]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__tail(X) -> tail(X)}
            and weakly orienting the rules
            {  mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros^#() -> c_6()
             , mark^#(zeros()) -> c_2(a__zeros^#())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__tail(X) -> tail(X)}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [2]
                  0() = [0]
                  zeros() = [1]
                  a__tail(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [12]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [13]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__zeros() -> cons(0(), zeros())}
            and weakly orienting the rules
            {  a__tail(X) -> tail(X)
             , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros^#() -> c_6()
             , mark^#(zeros()) -> c_2(a__zeros^#())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__zeros() -> cons(0(), zeros())}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [4]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  zeros() = [2]
                  a__tail(x1) = [1] x1 + [7]
                  mark(x1) = [1] x1 + [2]
                  tail(x1) = [1] x1 + [5]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [5]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [5]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(tail(X)) -> a__tail(mark(X))
                 , mark(cons(X1, X2)) -> cons(mark(X1), X2)}
              Weak Rules:
                {  a__zeros() -> cons(0(), zeros())
                 , a__tail(X) -> tail(X)
                 , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                 , a__zeros^#() -> c_6()
                 , mark^#(zeros()) -> c_2(a__zeros^#())
                 , a__zeros() -> zeros()
                 , mark(zeros()) -> a__zeros()
                 , mark(0()) -> 0()
                 , a__tail(cons(X, XS)) -> mark(XS)
                 , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                 , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(tail(X)) -> a__tail(mark(X))
                   , mark(cons(X1, X2)) -> cons(mark(X1), X2)}
                Weak Rules:
                  {  a__zeros() -> cons(0(), zeros())
                   , a__tail(X) -> tail(X)
                   , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                   , a__zeros^#() -> c_6()
                   , mark^#(zeros()) -> c_2(a__zeros^#())
                   , a__zeros() -> zeros()
                   , mark(zeros()) -> a__zeros()
                   , mark(0()) -> 0()
                   , a__tail(cons(X, XS)) -> mark(XS)
                   , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                   , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__zeros_0() -> 4
                 , a__zeros_1() -> 4
                 , a__zeros_1() -> 5
                 , cons_0(2, 2) -> 2
                 , cons_1(5, 2) -> 4
                 , cons_1(5, 2) -> 5
                 , 0_0() -> 2
                 , 0_0() -> 4
                 , 0_1() -> 4
                 , 0_1() -> 5
                 , zeros_0() -> 2
                 , zeros_0() -> 4
                 , zeros_1() -> 2
                 , zeros_1() -> 4
                 , zeros_1() -> 5
                 , a__tail_1(5) -> 4
                 , a__tail_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 4
                 , mark_1(2) -> 5
                 , tail_0(2) -> 2
                 , tail_1(5) -> 4
                 , tail_1(5) -> 5
                 , a__zeros^#_0() -> 1
                 , a__zeros^#_1() -> 7
                 , a__tail^#_0(2) -> 1
                 , a__tail^#_0(4) -> 3
                 , a__tail^#_1(5) -> 6
                 , c_1_0(1) -> 1
                 , c_1_1(8) -> 3
                 , c_1_1(8) -> 6
                 , mark^#_0(2) -> 1
                 , mark^#_1(2) -> 8
                 , c_2_0(1) -> 1
                 , c_2_1(7) -> 1
                 , c_2_1(7) -> 8
                 , c_3_0(3) -> 1
                 , c_3_1(6) -> 1
                 , c_3_1(6) -> 8
                 , c_4_0(1) -> 1
                 , c_4_1(8) -> 8
                 , c_6_0() -> 1
                 , c_6_1() -> 7}
      
   2) {  a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
       , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
       , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
       , mark^#(zeros()) -> c_2(a__zeros^#())
       , a__zeros^#() -> c_0()}
      
      The usable rules for this path are the following:
      {  mark(zeros()) -> a__zeros()
       , mark(tail(X)) -> a__tail(mark(X))
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(0()) -> 0()
       , a__zeros() -> cons(0(), zeros())
       , a__tail(cons(X, XS)) -> mark(XS)
       , a__zeros() -> zeros()
       , a__tail(X) -> tail(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(zeros()) -> a__zeros()
               , mark(tail(X)) -> a__tail(mark(X))
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(0()) -> 0()
               , a__zeros() -> cons(0(), zeros())
               , a__tail(cons(X, XS)) -> mark(XS)
               , a__zeros() -> zeros()
               , a__tail(X) -> tail(X)
               , mark^#(zeros()) -> c_2(a__zeros^#())
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
               , a__zeros^#() -> c_0()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(zeros()) -> a__zeros()
               , mark(0()) -> 0()
               , a__tail(cons(X, XS)) -> mark(XS)
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__zeros() -> zeros()}
            and weakly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__zeros() -> zeros()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(zeros()) -> c_2(a__zeros^#())}
            and weakly orienting the rules
            {  a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(zeros()) -> c_2(a__zeros^#())}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [0]
                  zeros() = [8]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [3]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__zeros^#() -> c_0()}
            and weakly orienting the rules
            {  mark^#(zeros()) -> c_2(a__zeros^#())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__zeros^#() -> c_0()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [0]
                  zeros() = [8]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [8]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [3]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [7]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
            and weakly orienting the rules
            {  a__zeros^#() -> c_0()
             , mark^#(zeros()) -> c_2(a__zeros^#())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  0() = [0]
                  zeros() = [8]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [7]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [9]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [8]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__tail(X) -> tail(X)}
            and weakly orienting the rules
            {  mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros^#() -> c_0()
             , mark^#(zeros()) -> c_2(a__zeros^#())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__tail(X) -> tail(X)}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [2]
                  0() = [0]
                  zeros() = [1]
                  a__tail(x1) = [1] x1 + [8]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [12]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [13]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__zeros() -> cons(0(), zeros())}
            and weakly orienting the rules
            {  a__tail(X) -> tail(X)
             , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros^#() -> c_0()
             , mark^#(zeros()) -> c_2(a__zeros^#())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__zeros() -> cons(0(), zeros())}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [4]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  zeros() = [2]
                  a__tail(x1) = [1] x1 + [7]
                  mark(x1) = [1] x1 + [2]
                  tail(x1) = [1] x1 + [5]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [5]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [5]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(tail(X)) -> a__tail(mark(X))
                 , mark(cons(X1, X2)) -> cons(mark(X1), X2)}
              Weak Rules:
                {  a__zeros() -> cons(0(), zeros())
                 , a__tail(X) -> tail(X)
                 , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                 , a__zeros^#() -> c_0()
                 , mark^#(zeros()) -> c_2(a__zeros^#())
                 , a__zeros() -> zeros()
                 , mark(zeros()) -> a__zeros()
                 , mark(0()) -> 0()
                 , a__tail(cons(X, XS)) -> mark(XS)
                 , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                 , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(tail(X)) -> a__tail(mark(X))
                   , mark(cons(X1, X2)) -> cons(mark(X1), X2)}
                Weak Rules:
                  {  a__zeros() -> cons(0(), zeros())
                   , a__tail(X) -> tail(X)
                   , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                   , a__zeros^#() -> c_0()
                   , mark^#(zeros()) -> c_2(a__zeros^#())
                   , a__zeros() -> zeros()
                   , mark(zeros()) -> a__zeros()
                   , mark(0()) -> 0()
                   , a__tail(cons(X, XS)) -> mark(XS)
                   , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                   , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__zeros_0() -> 4
                 , a__zeros_1() -> 4
                 , a__zeros_1() -> 5
                 , cons_0(2, 2) -> 2
                 , cons_1(5, 2) -> 4
                 , cons_1(5, 2) -> 5
                 , 0_0() -> 2
                 , 0_0() -> 4
                 , 0_1() -> 4
                 , 0_1() -> 5
                 , zeros_0() -> 2
                 , zeros_0() -> 4
                 , zeros_1() -> 2
                 , zeros_1() -> 4
                 , zeros_1() -> 5
                 , a__tail_1(5) -> 4
                 , a__tail_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 4
                 , mark_1(2) -> 5
                 , tail_0(2) -> 2
                 , tail_1(5) -> 4
                 , tail_1(5) -> 5
                 , a__zeros^#_0() -> 1
                 , a__zeros^#_1() -> 7
                 , c_0_0() -> 1
                 , c_0_1() -> 7
                 , a__tail^#_0(2) -> 1
                 , a__tail^#_0(4) -> 3
                 , a__tail^#_1(5) -> 6
                 , c_1_0(1) -> 1
                 , c_1_1(8) -> 3
                 , c_1_1(8) -> 6
                 , mark^#_0(2) -> 1
                 , mark^#_1(2) -> 8
                 , c_2_0(1) -> 1
                 , c_2_1(7) -> 1
                 , c_2_1(7) -> 8
                 , c_3_0(3) -> 1
                 , c_3_1(6) -> 1
                 , c_3_1(6) -> 8
                 , c_4_0(1) -> 1
                 , c_4_1(8) -> 8}
      
   3) {  a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
       , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
       , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
      
      The usable rules for this path are the following:
      {  mark(zeros()) -> a__zeros()
       , mark(tail(X)) -> a__tail(mark(X))
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(0()) -> 0()
       , a__zeros() -> cons(0(), zeros())
       , a__tail(cons(X, XS)) -> mark(XS)
       , a__zeros() -> zeros()
       , a__tail(X) -> tail(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(zeros()) -> a__zeros()
               , mark(tail(X)) -> a__tail(mark(X))
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(0()) -> 0()
               , a__zeros() -> cons(0(), zeros())
               , a__tail(cons(X, XS)) -> mark(XS)
               , a__zeros() -> zeros()
               , a__tail(X) -> tail(X)
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(zeros()) -> a__zeros()
               , mark(0()) -> 0()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()}
            and weakly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__zeros() -> cons(0(), zeros())
               , a__zeros() -> zeros()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
            and weakly orienting the rules
            {  a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [1]
                  zeros() = [7]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [9]
                  mark^#(x1) = [1] x1 + [4]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  mark(tail(X)) -> a__tail(mark(X))
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            and weakly orienting the rules
            {  mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(tail(X)) -> a__tail(mark(X))
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [7]
                  cons(x1, x2) = [1] x1 + [1] x2 + [6]
                  0() = [0]
                  zeros() = [1]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [6]
                  tail(x1) = [1] x1 + [13]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__tail(cons(X, XS)) -> mark(XS)}
            and weakly orienting the rules
            {  mark(tail(X)) -> a__tail(mark(X))
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
             , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__tail(cons(X, XS)) -> mark(XS)}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [1]
                  a__tail(x1) = [1] x1 + [9]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [15]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [5]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , a__tail(X) -> tail(X)}
              Weak Rules:
                {  a__tail(cons(X, XS)) -> mark(XS)
                 , mark(tail(X)) -> a__tail(mark(X))
                 , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                 , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
                 , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                 , a__zeros() -> cons(0(), zeros())
                 , a__zeros() -> zeros()
                 , mark(zeros()) -> a__zeros()
                 , mark(0()) -> 0()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , a__tail(X) -> tail(X)}
                Weak Rules:
                  {  a__tail(cons(X, XS)) -> mark(XS)
                   , mark(tail(X)) -> a__tail(mark(X))
                   , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                   , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
                   , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                   , a__zeros() -> cons(0(), zeros())
                   , a__zeros() -> zeros()
                   , mark(zeros()) -> a__zeros()
                   , mark(0()) -> 0()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  a__zeros_0() -> 4
                 , a__zeros_1() -> 4
                 , a__zeros_1() -> 5
                 , a__zeros_2() -> 4
                 , a__zeros_2() -> 5
                 , cons_0(2, 2) -> 2
                 , cons_1(5, 2) -> 4
                 , cons_1(5, 2) -> 5
                 , cons_2(8, 9) -> 4
                 , cons_2(8, 9) -> 5
                 , 0_0() -> 2
                 , 0_0() -> 4
                 , 0_1() -> 4
                 , 0_1() -> 5
                 , 0_2() -> 8
                 , zeros_0() -> 2
                 , zeros_0() -> 4
                 , zeros_1() -> 2
                 , zeros_1() -> 4
                 , zeros_1() -> 5
                 , zeros_2() -> 4
                 , zeros_2() -> 5
                 , zeros_2() -> 9
                 , a__tail_0(4) -> 4
                 , a__tail_1(5) -> 4
                 , a__tail_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 4
                 , mark_1(2) -> 5
                 , mark_1(9) -> 4
                 , mark_2(9) -> 4
                 , mark_2(9) -> 5
                 , tail_0(2) -> 2
                 , tail_1(4) -> 4
                 , tail_2(5) -> 4
                 , tail_2(5) -> 5
                 , a__tail^#_0(2) -> 1
                 , a__tail^#_0(4) -> 3
                 , a__tail^#_1(5) -> 7
                 , c_1_0(1) -> 1
                 , c_1_1(6) -> 3
                 , c_1_1(6) -> 7
                 , c_1_2(10) -> 7
                 , mark^#_0(2) -> 1
                 , mark^#_1(2) -> 6
                 , mark^#_1(9) -> 6
                 , mark^#_2(9) -> 10
                 , c_3_0(3) -> 1
                 , c_3_1(7) -> 1
                 , c_3_1(7) -> 6
                 , c_4_0(1) -> 1
                 , c_4_1(6) -> 6}
      
   4) {  a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
       , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
       , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
       , a__tail^#(X) -> c_7()}
      
      The usable rules for this path are the following:
      {  mark(zeros()) -> a__zeros()
       , mark(tail(X)) -> a__tail(mark(X))
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(0()) -> 0()
       , a__zeros() -> cons(0(), zeros())
       , a__tail(cons(X, XS)) -> mark(XS)
       , a__zeros() -> zeros()
       , a__tail(X) -> tail(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(zeros()) -> a__zeros()
               , mark(tail(X)) -> a__tail(mark(X))
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(0()) -> 0()
               , a__zeros() -> cons(0(), zeros())
               , a__tail(cons(X, XS)) -> mark(XS)
               , a__zeros() -> zeros()
               , a__tail(X) -> tail(X)
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
               , a__tail^#(X) -> c_7()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail^#(X) -> c_7()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(zeros()) -> a__zeros()
               , mark(0()) -> 0()
               , a__tail^#(X) -> c_7()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()}
            and weakly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__zeros() -> cons(0(), zeros())
               , a__zeros() -> zeros()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [7]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
            and weakly orienting the rules
            {  a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [8]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__tail(cons(X, XS)) -> mark(XS)
             , a__tail(X) -> tail(X)}
            and weakly orienting the rules
            {  mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__tail(cons(X, XS)) -> mark(XS)
               , a__tail(X) -> tail(X)}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [3]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [0]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            and weakly orienting the rules
            {  a__tail(cons(X, XS)) -> mark(XS)
             , a__tail(X) -> tail(X)
             , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [7]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  0() = [0]
                  zeros() = [6]
                  a__tail(x1) = [1] x1 + [9]
                  mark(x1) = [1] x1 + [10]
                  tail(x1) = [1] x1 + [9]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [6]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [15]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))}
            and weakly orienting the rules
            {  mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
             , a__tail(cons(X, XS)) -> mark(XS)
             , a__tail(X) -> tail(X)
             , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , a__tail^#(X) -> c_7()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [10]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [6]
                  zeros() = [2]
                  a__tail(x1) = [1] x1 + [13]
                  mark(x1) = [1] x1 + [10]
                  tail(x1) = [1] x1 + [13]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [6]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [3]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(tail(X)) -> a__tail(mark(X))
                 , mark(cons(X1, X2)) -> cons(mark(X1), X2)}
              Weak Rules:
                {  a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                 , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
                 , a__tail(cons(X, XS)) -> mark(XS)
                 , a__tail(X) -> tail(X)
                 , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                 , a__zeros() -> cons(0(), zeros())
                 , a__zeros() -> zeros()
                 , mark(zeros()) -> a__zeros()
                 , mark(0()) -> 0()
                 , a__tail^#(X) -> c_7()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(tail(X)) -> a__tail(mark(X))
                   , mark(cons(X1, X2)) -> cons(mark(X1), X2)}
                Weak Rules:
                  {  a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                   , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
                   , a__tail(cons(X, XS)) -> mark(XS)
                   , a__tail(X) -> tail(X)
                   , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                   , a__zeros() -> cons(0(), zeros())
                   , a__zeros() -> zeros()
                   , mark(zeros()) -> a__zeros()
                   , mark(0()) -> 0()
                   , a__tail^#(X) -> c_7()}
              
              Details:         
                The problem is Match-bounded by 1.
                The enriched problem is compatible with the following automaton:
                {  a__zeros_0() -> 4
                 , a__zeros_1() -> 4
                 , a__zeros_1() -> 5
                 , cons_0(2, 2) -> 2
                 , cons_1(5, 2) -> 4
                 , cons_1(5, 2) -> 5
                 , 0_0() -> 2
                 , 0_0() -> 4
                 , 0_1() -> 4
                 , 0_1() -> 5
                 , zeros_0() -> 2
                 , zeros_0() -> 4
                 , zeros_1() -> 2
                 , zeros_1() -> 4
                 , zeros_1() -> 5
                 , a__tail_1(5) -> 4
                 , a__tail_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 4
                 , mark_1(2) -> 5
                 , tail_0(2) -> 2
                 , tail_1(5) -> 4
                 , tail_1(5) -> 5
                 , a__tail^#_0(2) -> 1
                 , a__tail^#_0(4) -> 3
                 , a__tail^#_1(5) -> 7
                 , c_1_0(1) -> 1
                 , c_1_1(6) -> 3
                 , c_1_1(6) -> 7
                 , mark^#_0(2) -> 1
                 , mark^#_1(2) -> 6
                 , c_3_0(3) -> 1
                 , c_3_1(7) -> 1
                 , c_3_1(7) -> 6
                 , c_4_0(1) -> 1
                 , c_4_1(6) -> 6
                 , c_7_0() -> 1
                 , c_7_0() -> 3
                 , c_7_1() -> 7}
      
   5) {  a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
       , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
       , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
       , mark^#(zeros()) -> c_2(a__zeros^#())}
      
      The usable rules for this path are the following:
      {  mark(zeros()) -> a__zeros()
       , mark(tail(X)) -> a__tail(mark(X))
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(0()) -> 0()
       , a__zeros() -> cons(0(), zeros())
       , a__tail(cons(X, XS)) -> mark(XS)
       , a__zeros() -> zeros()
       , a__tail(X) -> tail(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(zeros()) -> a__zeros()
               , mark(tail(X)) -> a__tail(mark(X))
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(0()) -> 0()
               , a__zeros() -> cons(0(), zeros())
               , a__tail(cons(X, XS)) -> mark(XS)
               , a__zeros() -> zeros()
               , a__tail(X) -> tail(X)
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
               , mark^#(zeros()) -> c_2(a__zeros^#())}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , mark^#(zeros()) -> c_2(a__zeros^#())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(zeros()) -> a__zeros()
               , mark(0()) -> 0()
               , mark^#(zeros()) -> c_2(a__zeros^#())}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [2]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()}
            and weakly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , mark^#(zeros()) -> c_2(a__zeros^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__zeros() -> cons(0(), zeros())
               , a__zeros() -> zeros()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [0]
                  c_2(x1) = [1] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
            and weakly orienting the rules
            {  a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , mark^#(zeros()) -> c_2(a__zeros^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [8]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  mark(tail(X)) -> a__tail(mark(X))
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            and weakly orienting the rules
            {  mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , mark^#(zeros()) -> c_2(a__zeros^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(tail(X)) -> a__tail(mark(X))
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [3]
                  cons(x1, x2) = [1] x1 + [1] x2 + [2]
                  0() = [1]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [2]
                  mark(x1) = [1] x1 + [4]
                  tail(x1) = [1] x1 + [13]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [2]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__tail(cons(X, XS)) -> mark(XS)}
            and weakly orienting the rules
            {  mark(tail(X)) -> a__tail(mark(X))
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
             , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()
             , mark^#(zeros()) -> c_2(a__zeros^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__tail(cons(X, XS)) -> mark(XS)}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [4]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [1]
                  zeros() = [3]
                  a__tail(x1) = [1] x1 + [9]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [15]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [1] x1 + [1]
                  c_3(x1) = [1] x1 + [14]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , a__tail(X) -> tail(X)}
              Weak Rules:
                {  a__tail(cons(X, XS)) -> mark(XS)
                 , mark(tail(X)) -> a__tail(mark(X))
                 , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                 , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
                 , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                 , a__zeros() -> cons(0(), zeros())
                 , a__zeros() -> zeros()
                 , mark(zeros()) -> a__zeros()
                 , mark(0()) -> 0()
                 , mark^#(zeros()) -> c_2(a__zeros^#())}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , a__tail(X) -> tail(X)}
                Weak Rules:
                  {  a__tail(cons(X, XS)) -> mark(XS)
                   , mark(tail(X)) -> a__tail(mark(X))
                   , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                   , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
                   , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                   , a__zeros() -> cons(0(), zeros())
                   , a__zeros() -> zeros()
                   , mark(zeros()) -> a__zeros()
                   , mark(0()) -> 0()
                   , mark^#(zeros()) -> c_2(a__zeros^#())}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  a__zeros_0() -> 4
                 , a__zeros_1() -> 4
                 , a__zeros_1() -> 5
                 , a__zeros_2() -> 4
                 , a__zeros_2() -> 5
                 , cons_0(2, 2) -> 2
                 , cons_1(5, 2) -> 4
                 , cons_1(5, 2) -> 5
                 , cons_2(9, 10) -> 4
                 , cons_2(9, 10) -> 5
                 , 0_0() -> 2
                 , 0_0() -> 4
                 , 0_1() -> 4
                 , 0_1() -> 5
                 , 0_2() -> 9
                 , zeros_0() -> 2
                 , zeros_0() -> 4
                 , zeros_1() -> 2
                 , zeros_1() -> 4
                 , zeros_1() -> 5
                 , zeros_2() -> 4
                 , zeros_2() -> 5
                 , zeros_2() -> 10
                 , a__tail_0(4) -> 4
                 , a__tail_1(5) -> 4
                 , a__tail_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 4
                 , mark_1(2) -> 5
                 , mark_1(10) -> 4
                 , mark_2(10) -> 4
                 , mark_2(10) -> 5
                 , tail_0(2) -> 2
                 , tail_1(4) -> 4
                 , tail_2(5) -> 4
                 , tail_2(5) -> 5
                 , a__zeros^#_0() -> 1
                 , a__zeros^#_1() -> 8
                 , a__zeros^#_2() -> 12
                 , a__tail^#_0(2) -> 1
                 , a__tail^#_0(4) -> 3
                 , a__tail^#_1(5) -> 7
                 , c_1_0(1) -> 1
                 , c_1_1(6) -> 3
                 , c_1_1(6) -> 7
                 , c_1_2(11) -> 7
                 , mark^#_0(2) -> 1
                 , mark^#_1(2) -> 6
                 , mark^#_1(10) -> 6
                 , mark^#_2(10) -> 11
                 , c_2_0(1) -> 1
                 , c_2_1(8) -> 1
                 , c_2_1(8) -> 6
                 , c_2_2(12) -> 6
                 , c_2_2(12) -> 11
                 , c_3_0(3) -> 1
                 , c_3_1(7) -> 1
                 , c_3_1(7) -> 6
                 , c_4_0(1) -> 1
                 , c_4_1(6) -> 6}
      
   6) {  a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
       , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
       , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
       , mark^#(0()) -> c_5()}
      
      The usable rules for this path are the following:
      {  mark(zeros()) -> a__zeros()
       , mark(tail(X)) -> a__tail(mark(X))
       , mark(cons(X1, X2)) -> cons(mark(X1), X2)
       , mark(0()) -> 0()
       , a__zeros() -> cons(0(), zeros())
       , a__tail(cons(X, XS)) -> mark(XS)
       , a__zeros() -> zeros()
       , a__tail(X) -> tail(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  mark(zeros()) -> a__zeros()
               , mark(tail(X)) -> a__tail(mark(X))
               , mark(cons(X1, X2)) -> cons(mark(X1), X2)
               , mark(0()) -> 0()
               , a__zeros() -> cons(0(), zeros())
               , a__tail(cons(X, XS)) -> mark(XS)
               , a__zeros() -> zeros()
               , a__tail(X) -> tail(X)
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
               , mark^#(0()) -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(zeros()) -> a__zeros()
               , mark(0()) -> 0()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [0]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [1]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , mark^#(0()) -> c_5()}
            and weakly orienting the rules
            {  mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  a__zeros() -> cons(0(), zeros())
               , a__zeros() -> zeros()
               , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
               , mark^#(0()) -> c_5()}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [1]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [0]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [0]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [1]
                  mark^#(x1) = [1] x1 + [5]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [1]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  mark(tail(X)) -> a__tail(mark(X))
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
            and weakly orienting the rules
            {  a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , mark^#(0()) -> c_5()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  mark(tail(X)) -> a__tail(mark(X))
               , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
               , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [14]
                  cons(x1, x2) = [1] x1 + [1] x2 + [13]
                  0() = [0]
                  zeros() = [1]
                  a__tail(x1) = [1] x1 + [2]
                  mark(x1) = [1] x1 + [15]
                  tail(x1) = [1] x1 + [15]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [0]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {a__tail(cons(X, XS)) -> mark(XS)}
            and weakly orienting the rules
            {  mark(tail(X)) -> a__tail(mark(X))
             , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
             , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
             , a__zeros() -> cons(0(), zeros())
             , a__zeros() -> zeros()
             , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
             , mark^#(0()) -> c_5()
             , mark(zeros()) -> a__zeros()
             , mark(0()) -> 0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {a__tail(cons(X, XS)) -> mark(XS)}
              
              Details:
                 Interpretation Functions:
                  a__zeros() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  0() = [0]
                  zeros() = [0]
                  a__tail(x1) = [1] x1 + [9]
                  mark(x1) = [1] x1 + [1]
                  tail(x1) = [1] x1 + [15]
                  a__zeros^#() = [0]
                  c_0() = [0]
                  a__tail^#(x1) = [1] x1 + [1]
                  c_1(x1) = [1] x1 + [0]
                  mark^#(x1) = [1] x1 + [1]
                  c_2(x1) = [0] x1 + [0]
                  c_3(x1) = [1] x1 + [9]
                  c_4(x1) = [1] x1 + [0]
                  c_5() = [0]
                  c_6() = [0]
                  c_7() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                 , a__tail(X) -> tail(X)}
              Weak Rules:
                {  a__tail(cons(X, XS)) -> mark(XS)
                 , mark(tail(X)) -> a__tail(mark(X))
                 , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                 , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
                 , a__zeros() -> cons(0(), zeros())
                 , a__zeros() -> zeros()
                 , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                 , mark^#(0()) -> c_5()
                 , mark(zeros()) -> a__zeros()
                 , mark(0()) -> 0()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  mark(cons(X1, X2)) -> cons(mark(X1), X2)
                   , a__tail(X) -> tail(X)}
                Weak Rules:
                  {  a__tail(cons(X, XS)) -> mark(XS)
                   , mark(tail(X)) -> a__tail(mark(X))
                   , a__tail^#(cons(X, XS)) -> c_1(mark^#(XS))
                   , mark^#(cons(X1, X2)) -> c_4(mark^#(X1))
                   , a__zeros() -> cons(0(), zeros())
                   , a__zeros() -> zeros()
                   , mark^#(tail(X)) -> c_3(a__tail^#(mark(X)))
                   , mark^#(0()) -> c_5()
                   , mark(zeros()) -> a__zeros()
                   , mark(0()) -> 0()}
              
              Details:         
                The problem is Match-bounded by 2.
                The enriched problem is compatible with the following automaton:
                {  a__zeros_0() -> 4
                 , a__zeros_1() -> 4
                 , a__zeros_1() -> 5
                 , a__zeros_2() -> 4
                 , a__zeros_2() -> 5
                 , cons_0(2, 2) -> 2
                 , cons_1(5, 2) -> 4
                 , cons_1(5, 2) -> 5
                 , cons_2(8, 9) -> 4
                 , cons_2(8, 9) -> 5
                 , 0_0() -> 2
                 , 0_0() -> 4
                 , 0_1() -> 4
                 , 0_1() -> 5
                 , 0_2() -> 8
                 , zeros_0() -> 2
                 , zeros_0() -> 4
                 , zeros_1() -> 2
                 , zeros_1() -> 4
                 , zeros_1() -> 5
                 , zeros_2() -> 4
                 , zeros_2() -> 5
                 , zeros_2() -> 9
                 , a__tail_0(4) -> 4
                 , a__tail_1(5) -> 4
                 , a__tail_1(5) -> 5
                 , mark_0(2) -> 4
                 , mark_1(2) -> 4
                 , mark_1(2) -> 5
                 , mark_1(9) -> 4
                 , mark_2(9) -> 4
                 , mark_2(9) -> 5
                 , tail_0(2) -> 2
                 , tail_1(4) -> 4
                 , tail_2(5) -> 4
                 , tail_2(5) -> 5
                 , a__tail^#_0(2) -> 1
                 , a__tail^#_0(4) -> 3
                 , a__tail^#_1(5) -> 7
                 , c_1_0(1) -> 1
                 , c_1_1(6) -> 3
                 , c_1_1(6) -> 7
                 , c_1_2(10) -> 7
                 , mark^#_0(2) -> 1
                 , mark^#_1(2) -> 6
                 , mark^#_1(9) -> 6
                 , mark^#_2(9) -> 10
                 , c_3_0(3) -> 1
                 , c_3_1(7) -> 1
                 , c_3_1(7) -> 6
                 , c_4_0(1) -> 1
                 , c_4_1(6) -> 6
                 , c_5_0() -> 1
                 , c_5_1() -> 6}